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1 1. Introduction
Integrated multicomputer systems consist a set of loosely coupled processors, each with its own local
memory, into a single machine environment. In the distributed systems model, various user processes may
run concurrently on different machines and possibly communicate to achieve a common goal. This form of
concurrency encourages a programming style that uses large grain-size computation blocks. Such distri-
buted programs consist of a set of execution entities (called threads or tasks) that perform considerable
amount of work independently and communicate infrequently through messages. Threads are a convenient
way of expressing concurrent programs and therefore, many programming languages embody thread-like
entities in their syntaxp. OeT~?n f-tid ACG861. c However, the overhead of handling
processes by the operating system is costly. For instance, it has been noted that the UNIX processes are
heavy-weight in that they carry much associated state information. Therefore, operations on them (e.g.
context switching) are slow. - ((' -, /-

Light Weight Processes (LWP) has been suggesed by Kepes [Kep85] as a programming tool for support-
ing cooperating processes on a uniprocessor. In the LWP mechanism suggested by Kepes, a runtime sup-
port library provides the coroutine primitives wit.in a single, heavy-weight-process (HWP). Another alter-
native for supporting LWPs is at the kernel level. On a multiprocessor, the kernel support version has a
primary advantage of allowing real parallelism. One of the most recent operating system kernels that sup-
port LWPs is Mach (ABG86]. However, none of the kernel or user level LWP mechanisms provide con-

*currency in distributed environments.
3 This paper describes the Distributed Light Weight Processes (DLWP) mechanism, a facility for supporting

21 '' distributed programs in MOS, a multicomputer operating system [BaL85]. The goal of the Distributed
Light Weight Processes mechanism is to be able to exploit concurrency in a distributed environment. The
mechanism is designed to be able to support a variety of application types by supporting processes as a pro-
gramming tool. It exploits concurrency up to the level available in the system and provides additional, vir-
tual concurrency through time sharing. In this way, it can be used both for efficient utilization of con-

0 currency and for experimenting with large scale concurrent programs.

-i- I' )The DLWP mechanism is implemented immediately above the operating system kernel level, in the form
- ; of a user-level runtime library. It extends the uniprocessor Light Weight Processes mechanism through a

new operation, split, which adapts the classical Light Weight Processes mechanism for distribution and
I .~! dynamically disperses the workload among processors. A LWPpod within a HWP may split to create mul-

tiple pods that execute in different HWPs. The MOS dynamic load balancing [BaS85] automatically
assigns the HWPs to different machines and provides concurrency.
The partitioning strategy takes into consideration past behavior of the LWPs, in terms of CPU consumption
and communication. This profile information is used to reach a partition that splits the load evenly while
incurring minimum communication overhead. For this purpose, the profile information is kept in a graph

t This work was supported in panl by the US Air Force Office of Scientific Research under grant AFOSR-5-0284, in pan
by the National Council for Research and Development, grant no. 2525. and in pan by the Foundation for Research in Elec-
ironics Computers and Commumication, Israel Academy of Science and Humanities.
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and a heuristic graph partitioning algorithm is employed.

2. Background: MOS
The Distributed Light Weight Processes project is part of MOS. a Multi computer Operating System that

* was developed at the Hebrew University of Jerusalem. MOS is a general purpose, time sharing operating
system that intergrates a cluster of loosely coupled homogeneous computers into a single machine UNIX
system.

Hardware

The hardware model for which MOS is intended consists of a cluster of homogeneous computers loosely
connected by a local area communication network. Each computer is self contained, has its own memory
and may have local peripherals. The specific configuration of the system as of spring 1988 consists of
seven PCS/CADMUS 9000 machines, each with a MC68010 CPU, one megabyte of memory and a-, 80
Mb Fujitso disk drive. The machines are connected by a Proteon 10Mbps token ring based local area net-
work.

Network Transparency

The basic requirement of the MOS design is to maintain in full the classic UNIX interface. This implies
that user processes are oblivious to the existence of the network and take no account of the special system
architecture. For example, user files are named and accessed uniformly throughout the network and the
conventional UNIX semantics are preserved. Dynamic load balancing

Dynamic Load Balancing

•' The assignment of processes to processors may change dynamically in MOS during their runtime through
process migration in order to disperse the workload in the system efficiently. The ability to migrate

, .1 processes emerges from the homogeneity of the system and the network invisibility, so that in MOS the
processes are unaware of the actual processor they are running on. More details about MOS are found in
[BaL85].

3. Light Weight Processes in MOS

The Light Weight Processes (LWP) mechanism is a programming tool that supports the existence of pro-
gram parts as virtual parallel processes within one, heavy weight process. The LWPs share information DT"

and may exchange partial results during runtime via message passing. Designed at the user level, the CP
LWPs package in MOS is a library of routines providing scheduling and message passing services. Any INsPECTeo
program may use these services by linking its object modules with the LWPs library and by requesting the
services via the interface routines. In particular, calls to the LWP primitives may be generated automati-
cally by compilers of high level parallel programming languages, in order to provide support for parallel
programs.

The LWPs package simulates an abstract parallel machine. Any number of coexisting LWPs may execute
on it and are supposed to run in parallel on homogeneous processors. The only restriction is on the total
amount of memory allocated for all of the LWPs for their private stacks.

The Scheduler

The separate threads of control are maintained by a scheduling module that conducts a time sharing
scheduling, similarly to the scheduling of processes in a time sharing operating system. First, the schedul- ]*
ing routine scans the list of ready LWPs and selects one for execution. Then it performs a context switch to "-V'"' .
the selected LWP, i.e. resumes its execution from the point it was last suspended. The LWP is then
allowed to run until an interrupt or the next scheduling point.

" "
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Message Passing

In distributed applications it is essential to have the ability to communicate messages between its distinct
components. The handling of message passing is therefore an improtant aspect of the LWP package.
Furthermore, the strength of the LWP package depends heavily on the strength of the message-passing
part, in terms of generality, applicability and efficiency.

In MOS, a fully connected network of LWPs is used, with a semi-synchronous communication protocol
(i.e. a receiving LWP waits for a message to arrive, while a sending LWP resumes operation immediately).
Messages are addressed to LWPs using the LWP identification scheme. This message-passing scheme is
believed to be sufficiently powerful to support most languages' communication requirements.

Memory Handling and Shared Memory

Another function of the LWPs package is the handling of the LWPs' memory. The LWPs' data reside in
the heavy weight process' memory space. This space is accessible to all of the LWPs, since they are essen-
tialy parts of one program. The LWPs address two types of data storage: a static, global data area and a
private, runtime area.

The global area of memory is shared among all the LWPs in the heavy weight process. It is allocated at
compile time and its allocation is not changed during the execution of the program. "the global area con-
tains variables that are shared by all the processes, system parameters, used by the processes and constant
values that are initialized by the compiler.

A logical division of the heavy weight process' memory is provided by allocating each LWP a private
memory portion. The private area is managed as a stack and is used for local variables, temporary storage,
procedure activation records and per-LWP specific information. The private areas are not protected by
hardware access permissions and thus, it is required that the LWPs cooperate in confining themselves to
their local address space. The advantage of this organization is that the LWPs have their stack segments at
different locations, which makes the context switch an inexpensive operation that involves only the saving
and resuming of registers' contents, including the stack-pointer and (last) the program-counter.

4. Distributed Light Weight Processes

In distributed environments, concurrency is achieved in the form of processes that run in parallel on
different machines and interact through interprocess communication. A collection of processes executing
in a distributed system may indeed cooperate for a common purpose, but usually they represent programs
that fulfill different goals and were developed independently. Furthermore, the goal of distributed systems
is usually to enhance the overall system performance, rather than the performance of a single application.
Consequently, the handling of processes is usually costly and hence they are termed heavy-weight-
processes.

The Distributed Light Weight Processes (DLWP) mechanism is an extended version of the Light Weight
Processes mechanism for supporting concurrent applications in distributed systems. Using this mechanism,
both the conveniency of the LWP interface is supported and actual concurrency is achieved. Thus, on one
hand, the LWP mechanism provides general services that are detached from actual hardware limitations
and allow a large number of virtual processes. At the same time, the distributed version exploits the actual
concurrency in the system by breaking down applications to several components that execute in parallel.
This is done by mapping a (possibly large) set of cooperating LWPs into a smaller number of LWP clus-
ters.

The Split Concept

In MOS, actual parallelism is introduced into the DLWP mechanism through a new operation, called split.
A LWPs pod may decide to split by self partitioning into two disjoint subsets intended to exist together and
run independently (in parallel) on different machines. A split operation is carried out in several steps.
First, the pod is duplicated, creating a new LWPs pod that contains replica of the code and data needed for
managing the LWPs. The set of LWPs of the original pod is then partitioned into two disjoint subsets. One
partition remains in the original pod while the other partition shifts to the new pod's environment. After
the split, the LWPs assigned to each of the pods resume their operation without interrupt The pods are
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created and destroyed dynamically. Interaction between pods is done according to the LWP needs and
sharing of data between pods is not allowed.

An important underlying assumption of the split operation objective is that the pods have exclusive
resources, i.e. they do not compete among themselves, but just manage their internal resources. This
assumption requires of the underlying distributed operating system the support of concurrent execution of
pods (up to the system concurrency limit). In MOS, processes dynamically migrate between machines and
receive their share of the system resources by the dynamic load balancing mechanism. Thus, newly
created pods migrate within MOS to run on different machines in parallel.

The split/merge operations of pods, together with a suitable strategy for their activation, facilitate a
dynamic suboptimal load balancing which disperses the workload among the different machines.

Pod Interaction

The pods need to communicate between themselves to maintain the integrity of the split application. Thus,
. the DLWP mechanism requires from the underlying system the ability of pods to communicate via some

underlying RPC/IPC mechanism. The pods interact to achieve two goals: inter-pod message passing and
load dispersing.

Note that the LWPs are unaware of the underlying communication and they interface only to the local pod.

4.1. Message Passing in the DLWP

In the conventional LWP scheme, the message passing module of a single pod allows any pair of LWPs to
communicate via a send/receive interface. This property is essential for supporting distributed applications
and must be preserved by the DLWP mechanism. Thus, the DLWP mechanism must support communica-
tion between any two LWPs within different pods (that originate from a single application). In other
words, it must preserve the message passing operations semantics across pod barriers.

In order to support interpod message passing, the mechanism must provide a method for addressing LWPs
anywhere in the system. The problem is not only the naming of LWPs but, primarily, the LWP detection,
due to the possible pod splitting. In terms of addressing, the problem is that the binding of LWP IDs to
pods is not static: the pods split and reunite dynamically and the LWPs migrate among them. Therefore,
the DLWP system must maintain a dynamic global name space for the LWPs, i.e. a global identification
space that dynamically binds LWP IDs to pods' addresses at runtime.

The solution has an unavoidable cost in some duplication of information and in messages sent in the pro-
. cess of detection. The suggested technique employs two mechanisms: hierarchical LWP-ID space and

homes. These are interwined together to reliably locate any LWP using a reasonable amount of messages.

The Home Concept

Every LWP has a home-pod. The home pod, unlike the hosting pod, in which it currently runs, does not
change during the LWP's lifetime. The home pod maintains track of its LWPs by keeping up-to-date infor-
mation about their current location. This location may change by any of the operations: create, terminate,
split. Using the home scheme, each LWP whose home is known is located in two steps:

1. Find the home-pod of the target LWP.

2. Send a query location message to the home-pod and receive the current location (pod) of the LWP.

The Hierarchical LWP Name Space

LWPs form a hierarchical structure: they are created by other LWPs, via a create operation that causes the
created LWP to become the invoking LWP's child. An initial LWP is always present - the ancestor of all
LWPs - and all the activity is originally created by it.

The LWPs' name-space corresponds to the hierarchical structure of the parent-child relation. The ancestor
tree is labeled in a preorder fashion, by integer chains labels. The chains represent the path from the root
of the LV,P-tree to the identified LWP. The k-th child of a node at tree level I is assigned the number k at
the l-th position of the chain. Thus, the k-th child LWP has a LWP-ID composed of the parent ID (as
prefix), and k in the last position. For example, if <> is the initial, ancestor to all LWP, then <3 , 3 , 1> is
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the first child of the third child of the third child of the initial LWP.

The Homing Algorithm
The homing algorithm requires that for each LWP the home-pod of all its ancestors and direct children is

* :kept by its current hosting pod. In addition, tracking information keeps up-to-date information about LWPs
at their home pod. During a split operation, the following rules are applied to maintain these data:

Let pod Cn be a splitting pod and Cm be created by the split. For each LWP t that moves from Cn to Cm:
I. The home pod of t is notified of t's new location (and the corresponding tracktable entry there should

be updated)
2. If t = <tt , t 2 , • , t,> then the hometable entries of all prefixes -

<1I > , <t I , t2> ," , <1tI , ( 2 , "" • , tr- > , <tl , t2, "" " , t,.> - are copied to Cm.
3. For each LWP s which is a direct child of t, i.e. s <t , s,+, > for some s,.,, the hometable entry of s

is copied to Cm.

The detection algorithm is as follows:

let q = <q I , - • " , q,> be a LWP which must locate p =<p , p,>, such that for I <i k: qi =Pi.
Then q performs the following steps:

I. Let C denote the current pod

I. for i := k to r do (
find at C's hometable the home of <p I, pi Pi> and denote it by H
query H about <p, , ,pi>'s location and denote it by C

A detailed description of the homing algorithm and a discussion of its complexity is given in Mal881.

4.2. Load Dispersing

The load dispersing strategy controls the distribution of the workload among the different machines. The
strategy determines the threshold number of LWPs for activating the split operation. It also determines the
conditions for coalescing two existing pods via a merge operation. The coalescing is done either when the
number of LWPs in a certain pod drops below a minimum value or when the inter-communication between
two existing pods becomes heavy. In the latter case, the pods join and immediately re-split to yield a better
partition. The details of the strategy depend on the implementation, e.g. on the amount of memory avail-
able for the heavy-weight-process.

4.3. Memory Handling
As indicated in the previous chapter, LWPs within a single pod access two types of memory space: the glo-
bal area and the private area.

The global area is not used in MOS for shared variables but rather, contains library management parame-
ters and constants. Therefore, different pods need not synchronize accesses to this area and simply need to
duplicate it during the split operation.
The private area consists the runtime local space of the LWPs. The private memory portions of the LWPs
construct a Cactus Stack (tree structured) corresponding to the LWP hierarchy. The tree structure facili-
tates sharing of the inner parts by outer parts that directly connect to them. Thus, pods are responsible for
keeping replicas of memory portions of all of their LWPs' ancestors. This guarantees access of LWPs to
their ancestors' data. Since the LWP system does not support shared variables, these memory portions are
shared only for reading and not or modifying. The replicas consistency is maintained by not allowing a
parent LWP (which is allowed to modify its private memory) to run in parallel with its children LWPs.
The parent must block on children creation and await their termination before resuming operation.



5. Partitioning Algorithm

The splitting of LWP pods provides concurrency through parallel execution, at the cost of the resulting
interpod communication. Therefore, its efficiency depends on a good split of the load while minimizing the
interpod communication. In MOS. the partitioning is done by collecting profile information of the LWPs
behavior during their execution. The partitioning strategy is based on the past behavior of the LWPs in
terms of CPU consumption and communication with other LWPs. The goal is to use these parameters to
achieve a partitioning algorithm that, assuming past repeat behavior, will split the load equally among two
pods and will also result in minimum interaction between the two partitions. This prediction information is
hardly exact. However, it is preferable to advance declarations of the user about the amount of resources
consumed by each activity. In addition, the exact data is irrelevant since the mechanism employs heuristic,
suboptimal algorithms.

Hill Climbing Algorithm

The profile information can be represented as a graph, in which the vertices' weights (sizes) represent the
respective LWPs' CPU consumption and the edges represent the amount of communications between the
LWPs. Communication accounting is taken as the weighted connectivity matrix of the LWPs graph. In
this form, the partitioning problem becomes a graph partitioning problem. It is easy to verify that a graph
partitioning that minimizes the cut-size assures minimum interaction between the represented LWPs. The
load balancing considerations are incorporated into the algorithm through the size constraints; graph parti-
tions that are balanced in size represent equally loaded LWP pods.

The hill climbing algorithm starts with a given, random partition. It then iterates exchange steps over a
given partition; an exchange step consists of swapping between two vertices from the two partitions. In
each iteration of the loop, degrading steps are rejected and only steps that improve the current partition are

* accepted. Experiments with the hill climbing algorithm show that it converges rapidly to almost optimal
solutions for random graphs with up to 300 vertices ([Mal88]).

6. Implementation Details

LWPs are implemented within a single MOS process that contains the code for LWP management. The
. environment and resources of a LWP pod are those of a single MOS process. The LWP services are pro-

vided by a library of routines, written in C. Any program may gain LWP services by linking its object
modules with this library and by requesting the services via the interface routines.

Software Architecture

The DLWP provides various services, implemented by the following modules:

* The Scheduler
Support the coexistence of program parts as virtual, light weight processes. The running time is
divided between the ready-to-run LWPs by alternating their execution. The scheduling is asynchro-
nous, i.e. the LWPs execute different amounts of time between process switching.

* SleeplWakeup Mechanism
This module provides atomic synchronization operations for the LWPs. At any stage, an existing
LWP may be ready-to-run or waiting. Processes may switch between states using the sleep/wakeup
primitives. Using these primitives, other synchronization mechanisms may be implemented. For
example, the LWP message passing module uses them for synchronizing operations.

• LWP Message Passing
Communication between LWPs is enabled by the message passing module. This module provides
asynchronous communication services through structured SendlReceive operations. Any two LWPs
may communicate through this mechanism.

* Split
A pod may decide to split itself into two duplicate pods and divide the load between the two. The
splitting module is responsible for duplicating the pod and for performing the data manipulations
required for the division.

g
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0 The LWP Router
The routing module locates any LWP in the DLWP system. The message passing mechanism uses
this service to forward LWP messages to their destination.

a IPC
Pods interact to exchange load information and to pass LWP messages. The interaction is imple-
mented by using the IPC mechanism which provides structured communication between pods.

Interaction between pods
This module exchanges information between pods and carries out their local decisions. The pods
exchange load information in order to make split/join decisions. They also maintain dynamic track-
ing information about the LWPs for the homing scheme.

DL;WP Primitives

The following interface routines implement the DLWP system and provide the caller with the LWP/DLWP
services:

char *Getlwpid () - return the calling LWP's id (an integer vector)

Lwpclose () - closing routine of the DLWP system

Lwpinit C) - initializing routine of the DLWP system

Process *Maplwpid(id) - return the process structure of the spcified LWP (containing infor-
mation maintained by the system about the LWP)

char *Receive () - Receive a message (character buffer) Blocking call

Ident Route (from, to) - Find the location of the destination LWP (to). Used for low level
communication; routing is done automatically using 'Send/Receive'

Send(to, data, len) - Send a message to the speciflied LWP

Slp(event) - Sleep on 'event'

Spawn (nf, func) - Create a child process that runs 'func'

Spawnn (nf, func) -Create 'n' children processes that run 'runc'
Spawnv (nf, vfunc) - Create 'nf' children processes that run the corresponding elements

of 'vfunc'

Terminate () - Terminate the calling LWP (the call does not return)

Waitchilds () - Wait for all children termination

Wakeproc (p, event) - Wake the specified LWP on 'event'

Wakeup (event) - Wake all LWPs sleeping on 'event'

Yield () - Give up execution control

In addition, a split() operation is available for explicit invoking (in addition to the automatic activation
when the LWPs pod becomes "too heavy").

6.1. The Hard Issues

There are considerable difficulties with the implementation of LWPs in general and with the implementa-
tion of DLWP in particular. Most of the difficulties arise in the LWPs implementation and result from the
UNIX semantics. These are briefly described here; [Kep85] gives a more detailed description. Note that
all of these difficulties may be overcome, but sometimes, the solution is so cumbersome that it is preferable
to leave things as they are and notify the user.

Blocking System Calls

UNIX system calls such as read, write, pause may block for an arbitrary amount of time. Thus, one LWP
within the pod performing such a call might suspend the whole pod for that duration and prevent it from
executing. The problem is overcome by linking the program with a special library which provides a non-
blocking version of these system calls.
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Signals and Timeouts

UNIX supports one timer interrupt and one signal handler (per signal) in a process. The LWPs may
request for different signal handlers or a few timeouts. This results in the later calls overriding existing

*ones. Again, a system call library which supports multi timeouts and selects interrupt handlers according
*! to the LWP context solves this problem.

Global Memory Access
The LWPs in a pod have access permissions to the entire process' memory. Thus, there is no protection of
the LWP local memory segments just as there is no protection of the library's global variables. In view of
the split operation, which separates the accessible space of some of the LWPs from others, it seems best to
require the programmer to restrict access to the local data. Of course, bugs resulting from loose pointers
that go out of bounds are very hard to detect with this "solution".

Shared State Variables
LWPs may access state, variables that effect the whole pod. The access may be implicit in a procedure call.
Typical examples in UNIX are thefile offset, kept in the file descriptor of the process' open files, which is
modified by the read, write and seek calls, and the errno variable that holds the return value of system
calls. LWPs that perform seek-read/write sequences all effect these variables and need to be synchronized.
[McS87] suggest a few ways to overcome this problem. Two of them are:
I. Avoiding the state variables altogether. For example, in the file offset instance, add an offset parame-

ter to the read/write calls.
2. Making the state variables part of the LWPs' private context Their values are to be looked up by the

concerned procedures.

7. Performance

The performance of the system was tested to give the "raw" system performance, i.e. the minimal cost of
system operations such as process creation, context switching, etc. The "stripped" version of the system
was used and the following costs were measured (in CPU time, both user and system time):
1. System startup (expected to be negligible, but should be subtracted from any further measurement)
2. LWP creation time and space

3. LWP context switching, the Yield () operation

4. Message passing
The test programs were run 10 times for each checked value; the recorded results are the average of those
runs. The programs were run with different amounts of LWPs, to check their effect on the complexity of
the various algorithms. Table 1 is a summary of the results; the net overhead per operation was computed

* from the measured times by subtracting the startup cost and dividing by the number of operations per-
formed.

no. ofLWPs 1 20 100 300
user Sys user Sys user yse user sys

startup 100 1000 100 1000 100 1000 100 1000
LWP create 0 0 3 11 6 7 13 9
context switch 0.1 0 0.1 0 0.1 0 0.1 0
Yield 0.4 0 0.7 0 5 0 12 0
local message 4 0 5 0 9 0 15 0
remote message 4 40 7 45 11 45 17 40

Table 1 - LWP operations times, in milliseconds
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8. Conclusions
We have presented the Distributed Light Weight Processes mechanism, a facility for supporting ditributed
programs in MOS. The main features of the mechanism are:

dynamic configuration
The mechanism utilizes memory and CPU according to the application's needs. In particular, the
binding of threads to CPUs is done dynamically by splitting at runtime. This property relies on the
ability of the underlying operating system to dynamically assign processes to processors. In the
current implementation, the MOS dynamic load balancing facility provides the required flexibility.

massive parallelism
The mechanism is designed to provide massive support of parallelism, free from the hardware con-
straints. The threads may be scheduled in a time-sharing scheme when they exceed the available
concurrency in the system. Thus, the only limit on their number is their total consumption of
memory.

applicability
The mechanism provides services via a set of general purpose interface routines. This set may be
easily modified or added to, e.g. to allow different communication styles. This allows the mechanism
to support a variety of parallel programming languages in providing the underlying runtime support
for precompiled programs. For example, an occam support package has already been implemented
on top of a single machine LWP system (MaS86] and is now being ported to MOS to use the DLWP
mechanism.

portability
The DLWP library is written on a UNIX compatible system, in a high level programming language
(c).
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